Preview

Рецепт

Расширенный поиск

О некоторых подходах к преодолению поствирусного синдрома COVID-19

https://doi.org/10.34883/PI.2021.24.4.003

Полный текст:

Аннотация

Представлены данные о клинических проявлениях постковидного синдрома и его патофизиологических механизмах в аспекте энергетического метаболизма. Дано обоснование использования экзогенного креатинфосфата для коррекции нарушений клеточного энергетического метаболизма при постковидном синдроме. Приводятся результаты клинических исследований, подтверждающие целесообразность предлагаемого терапевтического подхода к коррекции последствий перенесенного COVID-19.

Об авторах

В. Г. Цапаев
Белорусский государственный медицинский университет
Беларусь

 Минск



Н. Л. Цапаева
Белорусский государственный медицинский университет
Беларусь

 Минск



Список литературы

1. Walker J.B. (1979) Creatine: biosynthesis, regulation, and function. Adv.Enzymol Relat. Areas. Mol. Biol., vol. 50, pp. 117–242.

2. Landoni G., Zangrillo A., Lomivorotov V. (2016) Interactive CardioVascular and Thoracic Surgery, no 4, vol. 23, pp. 837–646.

3. Mingxing F., Landoni G., Zangrillo A. (2018) Phos phocreatine in Cardiac Surgery Patients: A Meta-Analysis of Randomized Controlled Trials. J Cardiothorac Vasc Anesth., vol. 32, pp. 762–779.

4. Semenovsky M.L., Shumakov V.I., Sharov V.G. (1987) Protection of ischemic myocardium by exogenous phosphocreatine. II. Clinical, ultrastructural, and biochemical evaluations. J. Thorac. Cardiovasc. Surg., vol. 94, pp. 762–769.

5. Mastroroberto P., Di Tomasso L., Chello M. (1992) Creatine phosphate protection of the ischemic myocardium during cardiac surgery. Current Therapeutic Res., vol. 51, pp. 37–45.

6. Yavorovsky A.G. Kozlov I.A. (2017) Vozmozhnosty aduvantnoi metabolicheskoi cardioproteccii exogennim phospocreatinom. Aduvantnaja cardioproteccia u cardiokhirurgicheskikh bolnikh [Options of adjuvant metabolic cardioprotection with exogenic phosphocreatine. Adjuvant cardioprotection in cardiosurgical patients]. M.: PharmEtika, pp. 142–161.

7. Kozlov I, Yavorovsky A. (2018) Exogennyi phosphocreatine kak cardilprotector v khirurgii i intensivnoi kardiologii: analiticheskyi obzor [Exogenic phosphocreatine as cardioprotector in surgery and intensive cardiology: analytical review]. Medicinskyi alphavit, vol. 1. Neotlozhnaia medicina.

8. Mastroroberto P., Chello M., Zofrea S. (1995) Cardioprotective Effects of Phosphocreatine in Vascular Surgery. Vascular Surgery, no 4, vol. 29, pp. 255–260.

9. Derbugov V.N., Potapov A.L., Potievskaya V.I. (2017) Primenenie ekzogennogo fosfokreatina u pacientov pozhilogo i starcheskogo vozrasta, operiruemyh po povodu kolorektal’nogo raka [Use of exogenic phosphocreatine in elderly and senile patients operated on for colorectal cancer]. Obshchaya reanimatologiya, no 4, vol. 13, pp. 38–45.

10. Iosseliani D.G., Koledinskij A.G., Kuchkina N.V. (2014) Ogranichivaet li vnutrikoronarnoe vvedenie fosfokreatina reperfuzionnoe povrezhdenie miokarda pri angioplastike infarktotvetstvennoj koronarnoj arterii v ostrom periode infarkta [Does the intracoronary introduction of phosphocreatine limit the reperfusion damage of myocardium in angioplasty of infarction-responsible coronary artery in the acute period of infarction]. Intervencionnaya kardiologiya, no 6, pp. 11–16.

11. Nalbandian A. (2021) Post-acute COVID-19 syndrome. Nature Medicine, vol. 27, pp. 601–615.

12. Bannister B.A. (1988) Post-infectiousdiseasesyndrome. Postgraduate Medical Journal, vol. 64, pp. 559–567.

13. Mao L. (2020) Neurological manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China, JAMA Neurol., Apr. 10.

14. World Health Organization (2019) International Classification of Diseases for Mortality and Morbidity Statistics. 11th Revision. Available at: https://icd.who.int/browse11/l-m/en.

15. Lim E.J., Son C.G. (2020) Review of case definitions for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Transl. Med., vol. 18, p. 289.

16. Hamsini B.C. (2018) Clinical Application of MR Spectroscopy in Identifying Biochemical Composition of the Intracranial Pathologies. GABA And Glutamate – New Developments In Neurotransmission Research.

17. Heerschap A. (1999) Introduction to in vivo 31P magnetic resonance spectroscopy of (human) skeletal muscle. Proceedings of the Nutrition Society, vol. 58, pp. 861–870.

18. Neubauer S., Krahe T., Schindler R., Horn M., Hillenbrand H., Entzeroth C. (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circ., no 6, vol. 86, pp. 1810–8.

19. Gaddi A.V., Galuppo P., Yang J. (2017) Creatine Phosphate Administration in Cell Energy Impairment Conditions: A Summary of Past and Present Research. Heart, Lung and Circulation, vol. 26, pp. 1026–1035.

20. Surazakov A., Klassen A., Gizinger O. (2013) The bioenergetics of COVID-19 immunopathology and the therapeutic potential of biophysical radiances. Journal of Photochemistry & Photobiology. B: Biology, vol. 20, pp. 1–9.

21. Sarkesh A. (2020) Extrapulmonary Clinical Manifestations in COVID-19 Patients. Am. J. Trop. Med. Hyg, no 5, vol. 105, pp. 1783–1796.


Для цитирования:


Цапаев В.Г., Цапаева Н.Л. О некоторых подходах к преодолению поствирусного синдрома COVID-19. Рецепт. 2021;24(4):451-461. https://doi.org/10.34883/PI.2021.24.4.003

For citation:


Tsapaev V.G., Tsapaeva N.L. Some Ideas how to Overcome the Post-Virus Syndrome of COVID-19. Recipe. 2021;24(4):451-461. (In Russ.) https://doi.org/10.34883/PI.2021.24.4.003

Просмотров: 59


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1993-4882 (Print)
ISSN 2414-2263 (Online)