Preview

Рецепт

Расширенный поиск

Как микробиота формирует ревматические заболевания? Часть 2

https://doi.org/10.34883/PI.2021.24.1.009

Полный текст:

Аннотация

В кишечнике человека обитает чрезвычайно разнообразное и обильное микробное сообщество, которое корректирует и даже модулирует многие процессы, связанные со здоровьем. «Интерфейсы» слизистой оболочки являются особенно активными участками взаимодействия микроорганизмов и хозяев. Возрастающее понимание характерного состава и функции микробиоты кишечника выявило, что она не только участвует в поддержании целостности слизистой оболочки, но и затрагивает гомеостаз системы иммунитета с формированием как локальных, так и системных иммунных реакций. В представленном обзоре рассмотрена роль нарушений устойчивого состояния и взаимодействия хозяин – микроорганизм, которые могут потенциально влиять на развитие и прогрессирование ревматических заболеваний. В заключение будут рассмотрены вопросы новых терапевтических целей коррекции микробиоты.

Об авторе

А. С. Рудой
Белорусский государственный медицинский университет
Беларусь


Список литературы

1. Theofilopoulos A.N., Kono D.H., Baccala R. (2017) The multiple pathways to autoimmunity. Nature immunology, 18 (7), 716.

2. Billi A.C., Kahlenberg J.M., Gudjonsson J.E. (2019) Sex bias in autoimmunity. Curr. Opin. Rheumatol., 31, pp. 53–61.

3. Gomez A., Luckey D., Taneja V. (2015) The gut microbiome in autoimmunity: sex matters. Clinical immunology, 159 (2), pp. 154–162.

4. Collins J.W. (2014) Citrobacter rodentium: infection, inflammation and the microbiota. Nature Reviews Microbiology, 12 (9), pp. 612–623.

5. Omenetti S. (2019) The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity, 51, pp. 77–89.

6. Campisi L. (2016) Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nat. Immunol., 17, pp. 1084–1092.

7. Ansaldo E. (2019) Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science, 364, pp. 1179–1184.

8. Berer K. (2017) Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl Acad. Sci. USA, 114, pp. 10719–10724.

9. Brand S. (2009) Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut, 58, pp. 1152–1167.

10. Ahern H.S. (2006) Interleukin‐23 drives innate and T cell‐mediated intestinal inflammation. J Exp Med, 203, pp. 2473–83.

11. Gill T., Brooks S.R., Rosenbaum J.T., Asquith M., Colbert R.A. (2019) Novel Interomic Analysis Reveals Relationships Between Diverse Gut Microbiota and Host Immune Dysregulation in HLA-B27-Induced Experimental Spondyloarthritis. Arthritis & Rheumatology, 71 (11), pp. 1849–1857.

12. Munz C., Lunemann J.D., Getts M.T., Miller S.D. (2009) Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol.,9, pp. 246–258.

13. Manfredo V. (2018) Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science, 359, pp. 1156–1161.

14. Zegarra-Ruiz D.F. (2019) A diet-sensitive commensal Lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe,25, pp. 113–127.

15. Konig D. (2019) The flagellin of candidate live biotherapeutic Enterococcus gallinarum MRx0518 is a potent immunostimulant. Sci. Rep., 9, 801.

16. Konig M. (2016) Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci. Transl Med., 8, 369ra176.

17. Sanderson N. (2017) Cocapture of cognate and bystander antigens can activate autoreactive B cells. Proceedings of the National Academy of Sciences, 114 (4), pp. 734–739.

18. Huang Z. (2019) Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity.Nat. Microbiol., 4, pp. 766–773.

19. Greiling T. (2018) Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci. Transl Med., 10, eaan2306.

20. Krebs C.F. (2016) Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity,45, pp. 1078–1092.

21. Bradley C. (2017) Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell host & microbe, 22 (5), pp. 697–704.

22. Marson A., Housley W. J., Hafler D.A. (2015) Genetic basis of autoimmunity. J. Clin. Invest., 125, pp. 2234–2241.

23. Chu H. (2016) Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science, 352, pp. 1116–1120.

24. Taurog J.D. (1994) The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. The Journal of experimental medicine, vol. 180, no 6, pp. 2359–2364.

25. Hacquard-Bouder C., Ittah M., Breban M. (2006) Animal models of HLA-B27-associated diseases: new outcomes. Jt Bone Spine Rev Rhum, 73, pp. 132–138.

26. Hammer R.E., Maika S.D., Richardson J.A. (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m. Cell,63, pp. 1099–1112.

27. Rath Heiko C. (1996) Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. The Journal of clinical investigation, 98.4, pp. 945–953.

28. Mukherjee A. (2018) Rheumatoid arthritis-associated autoimmunity due to Aggregatibacter actinomycetemcomitans and its resolution with antibiotic therapy. Front. Immunol., 9, 2352.

29. Ghouri Y.A. (2014) Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin. Exp. Gastroenterol., 7, pp. 473–487.

30. Zimmermann M. (2019) Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 570, pp. 462–467.

31. Ben-Zvi I., Kivity S., Langevitz P., Shoenfeld Y. (2012) Hydroxychloroquine: from malaria to autoimmunity. Clin. Rev. Allergy Immunol., 42, pp. 145–153.

32. Vieira A.T. (2015) A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis Rheumatol., 67, pp. 1646–1656.

33. Kawashima T. (2018) Double-stranded RNA derived from lactic acid bacteria augments Th1 immunity via interferon-beta from human dendritic cells. Front. Immunol., 9, 27.

34. Rothhammer V. (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med., 22, pp. 586–597.

35. Wu Chuan (2013) Induction of pathogenic T H 17 cells by inducible salt-sensing kinase SGK1. Nature, 496.7446, pp. 513–517.

36. Marchesan J.T. (2013) Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. Arthritis Res. Ther., 15, R186.


Для цитирования:


Рудой А.С. Как микробиота формирует ревматические заболевания? Часть 2. Рецепт. 2021;(1):101-113. https://doi.org/10.34883/PI.2021.24.1.009

For citation:


Rudoy .A. How Microbiota Forms Rheumatic Diseases? Part 2. Recipe. 2021;(1):101-113. (In Russ.) https://doi.org/10.34883/PI.2021.24.1.009

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1993-4882 (Print)
ISSN 2414-2263 (Online)